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Single Crystals
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Single Crystal

Ø Single crystals have a periodic atomic structure across
its whole volume.

Ø At long range length scales, each atom is related to
every other equivalent atom in the structure by
translational or rotational symmetry



Polycrystalline Solids
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Ø Polycrystalline materials are made up
of an aggregate of many small single
crystals (also called crystallites or
grains).

Ø Polycrystalline materials have a high
degree of order over many atomic or
molecular dimensions.

Ø Grains (domains) are separated by
grain boundaries. The atomic order
can vary from one domain to the next.

Ø The grains are usually 100 nm - 100
microns in diameter.

Ø Polycrystals with grains less than 10
nm in diameter are nanocrystalline



Amorphous Solids
Ø Amorphous (Non-crystalline) Solids are made up of randomly

orientated atoms , ions, or molecules that do not form defined
patterns or lattice structures.

Ø Amorphous materials have order only within a few atomic or molecular
dimensions.

Ø Amorphous materials do not have any long-range order, but they have
varying degrees of short-range order.

Ø Examples to amorphous materials include amorphous silicon, plastics,
and glasses.

Ø Amorphous silicon can be used in solar cells and thin film transistors.
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In crystallography, only the geometrical properties of the
crystal are of interest, therefore one replaces each atom by
a geometrical point located at the equilibrium position of
that atom.

Platinum Platinum surface Crystal lattice and 
structure of  Platinum(scanning tunneling microscope)

What is a Crystal Lattice



Ø An infinite array of points in
space.

Ø Each point has identical
surroundings to all others.

Ø Arrays are arranged in a
periodic manner.
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Crystal Lattice
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The set of r’ defined below for all u1, u2, and u3 defines a lattice.



Crystal Structure
Crystal structures can be obtained by attaching atoms, groups
of atoms or molecules which are called basis (motif) to the
lattice sides of the lattice point.
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Crystal Structure = Crystal Lattice + Basis

Basis composed of atoms at the positions               
with j = 1,2,...,s. Here x, y, z may be selected to have values between 0 and 1. 

one to the other as the temperature or pressure is varied. Sometimes two struc-
tures coexist at the same temperature and pressure, although one may be slightly
more stable.

SUMMARY

• A lattice is an array of points related by the lattice translation operator 
T ! u1a1 " u2a2 " u3a3, where u1, u2, u3 are integers and a1, a2, a3 are the
crystal axes.

• To form a crystal we attach to every lattice point an identical basis composed
of s atoms at the positions rj ! xja1 " yja2 " zja3, with j ! 1, 2, . . . , s. Here
x, y, z may be selected to have values between 0 and 1.

• The axes a1, a2, a3 are primitive for the minimum cell volume 
for which the crystal can be constructed from a lattice translation operator T
and a basis at every lattice point.

Problems

1. Tetrahedral angles. The angles between the tetrahedral bonds of diamond are the
same as the angles between the body diagonals of a cube, as in Fig. 10. Use elemen-
tary vector analysis to find the value of the angle.

2. Indices of planes. Consider the planes with indices (100) and (001); the lattice is
fcc, and the indices refer to the conventional cubic cell. What are the indices of
these planes when referred to the primitive axes of Fig. 11?

3. Hcp structure. Show that the c/a ratio for an ideal hexagonal close-packed struc-
ture is If c/a is significantly larger than this value, the crystal structure
may be thought of as composed of planes of closely packed atoms, the planes being
loosely stacked.

(8
3)1/2�!�1.633.

! a1 ! a2 # a3 !
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A two-dimensional Bravais lattice with different
choices for the basis
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Primitive Cell in 2D
The smallest component of the crystal (group of atoms,
ions or molecules), which when stacked together with pure
translational repetition reproduces the whole crystal.
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The parallelograms 1, 2, and 3 are primitive cells equal 
in area but the parallelogram 4 is not.

h



Primitive Cell in 3D
A primitive cell contains only one lattice point and the
volume of the parallelepiped is
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Primitive Lattice Cell

The parallelepiped defined by primitive axes a1, a2, a3 is called a primitive
cell (Fig. 3b). A primitive cell is a type of cell or unit cell. (The adjective unit is
superfluous and not needed.) A cell will fill all space by the repetition of suit-
able crystal translation operations. A primitive cell is a minimum-volume cell.
There are many ways of choosing the primitive axes and primitive cell for a
given lattice. The number of atoms in a primitive cell or primitive basis is
always the same for a given crystal structure.

There is always one lattice point per primitive cell. If the primitive cell is a
parallelepiped with lattice points at each of the eight corners, each lattice
point is shared among eight cells, so that the total number of lattice points in
the cell is one: The volume of a parallelepiped with axes a1, a2, a3 is

(3)

by elementary vector analysis. The basis associated with a primitive cell is called
a primitive basis. No basis contains fewer atoms than a primitive basis contains.
Another way of choosing a primitive cell is shown in Fig. 4. This is known to
physicists as a Wigner-Seitz cell.

FUNDAMENTAL TYPES OF LATTICES

Crystal lattices can be carried or mapped into themselves by the lattice
translations T and by various other symmetry operations. A typical symmetry
operation is that of rotation about an axis that passes through a lattice point.
Lattices can be found such that one-, two-, three-, four-, and sixfold rotation
axes carry the lattice into itself, corresponding to rotations by 2!, 2!/2, 2!/3,
2!/4, and 2!/6 radians and by integral multiples of these rotations. The rota-
tion axes are denoted by the symbols 1, 2, 3, 4, and 6.

We cannot find a lattice that goes into itself under other rotations, such as 
by 2!/7 radians or 2!/5 radians. A single molecule properly designed can have
any degree of rotational symmetry, but an infinite periodic lattice cannot. We 
can make a crystal from molecules that individually have a fivefold rotation axis,
but we should not expect the lattice to have a fivefold rotation axis. In Fig. 5 we
show what happens if we try to construct a periodic lattice having fivefold

Vc ! ! a1 

! a2 " a3 ! ,

8�"�

1
8�!�1.
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Figure 4  A primitive cell may also be chosen fol-
lowing this procedure: (1) draw lines to connect a
given lattice point to all nearby lattice points; (2) at
the midpoint and normal to these lines, draw new
lines or planes. The smallest volume enclosed in this
way is the Wigner-Seitz primitive cell. All space may
be filled by these cells, just as by the cells of Fig. 3.

ch01.qxd  6/25/04  5:28 PM  Page 6

Wigner-Seitz primitive cell 



• The primitive cell and, consequently,
the entire lattice, is uniquely
determined by the six lattice
constants: a, b, c, α, β and γ.

Ø Only 1/8 of each lattice point in a
unit cell can actually be assigned to
that cell.

Ø Each primitive cell in the figure can
be associated with 8 x 1/8 = 1
lattice point.
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Primitive Cell



Five Bravais Lattices in 2D
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3D – 14 BRAVAIS LATTICES AND SEVEN CRYSTAL TYPES

Ø Cubic Crystal System (SC, BCC,FCC)

Ø Hexagonal Crystal System (S)

Ø Triclinic Crystal System (S)

Ø Monoclinic Crystal System (S, Base-C)

Ø Orthorhombic Crystal System (S, Base-C, BC, FC)

Ø Tetragonal Crystal System (S, BC)

Ø Trigonal (Rhombohedral) Crystal System (S)

13

Typical Crystal Structures
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Three 3D Conventional Cells
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The position of a point in a cell is specified by (2) in terms of the atomic
coordinates x, y, z. Here each coordinate is a fraction of the axial length a1, a2,
a3 in the direction of the coordinate axis, with the origin taken at one corner of
the cell. Thus the coordinates of the body center of a cell are , and the face
centers include In the hexagonal system the primitive cell is a
right prism based on a rhombus with an included angle of 120!. Figure 12
shows the relationship of the rhombic cell to a hexagonal prism.

INDEX SYSTEM FOR CRYSTAL PLANES

The orientation of a crystal plane is determined by three points in the
plane, provided they are not collinear. If each point lay on a different crystal
axis, the plane could be specified by giving the coordinates of the points in
terms of the lattice constants a1, a2, a3. However, it turns out to be more useful
for structure analysis to specify the orientation of a plane by the indices deter-
mined by the following rules (Fig. 13).

• Find the intercepts on the axes in terms of the lattice constants a1, a2, a3.
The axes may be those of a primitive or nonprimitive cell.
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Figure 11  The rhombohedral primitive cell of the face-centered
cubic crystal. The primitive translation vectors a1, a2, a3 connect
the lattice point at the origin with lattice points at the face centers.
As drawn, the primitive vectors are:

The angles between the axes are 60 . !

a1 " 

1
2 a(x̂ # ŷ) ;  a2 " 

1
2 a(ŷ # ẑ) ;  a3 " 

1
2 a(ẑ # x)ˆ  .

Figure 12  Relation of the primitive cell 
in the hexagonal system (heavy lines) to 
a prism of hexagonal symmetry. Here
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The characteristics of the three cubic lattices are summarized in Table 2. A
primitive cell of the bcc lattice is shown in Fig. 9, and the primitive translation
vectors are shown in Fig. 10. The primitive translation vectors of the fcc lattice
are shown in Fig. 11. Primitive cells by definition contain only one lattice
point, but the conventional bcc cell contains two lattice points, and the fcc cell
contains four lattice points.
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Table 2  Characteristics of cubic latticesa

Simple Body-centered Face-centered

Volume, conventional cell a3 a3 a3

Lattice points per cell 1 2 4
Volume, primitive cell a3

Lattice points per unit volume 1/a3 2/a3 4/a3

Number of nearest neighbors 6 8 12
Nearest-neighbor distance a 31/2 a/2 ! 0.866a a/21/2 ! 0.707a
Number of second neighbors 12 6 6
Second neighbor distance 21/2a a a
Packing fractiona

!0.524 !0.680 !0.740

a The packing fraction is the maximum proportion of the available volume that can be filled
with hard spheres.
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Figure 9  Body-centered cubic lattice, showing a
primitive cell. The primitive cell shown is a rhombo-
hedron of edge a, and the angle between adja-
cent edges is 109"28#.

1
2!3

Figure 10  Primitive translation vectors of the body-
centered cubic lattice; these vectors connect the lattice
point at the origin to lattice points at the body centers.
The primitive cell is obtained on completing the rhom-
bohedron. In terms of the cube edge a, the primitive
translation vectors are

Here , , are the Cartesian unit vectors.ẑŷx̂
a3 ! 

1
2a(x̂ $ ŷ % ẑ) .

a1 ! 

1
2a(x̂ % ŷ $ ẑ) ;    a2  ! 

1
2a($x̂ % ŷ % ẑ) ;
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a1 ! 

1
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ch01.qxd  7/20/04  2:50 PM  Page 10



16

The characteristics of the three cubic lattices are summarized in Table 2. A
primitive cell of the bcc lattice is shown in Fig. 9, and the primitive translation
vectors are shown in Fig. 10. The primitive translation vectors of the fcc lattice
are shown in Fig. 11. Primitive cells by definition contain only one lattice
point, but the conventional bcc cell contains two lattice points, and the fcc cell
contains four lattice points.

10

Table 2  Characteristics of cubic latticesa

Simple Body-centered Face-centered

Volume, conventional cell a3 a3 a3

Lattice points per cell 1 2 4
Volume, primitive cell a3

Lattice points per unit volume 1/a3 2/a3 4/a3

Number of nearest neighbors 6 8 12
Nearest-neighbor distance a 31/2 a/2 ! 0.866a a/21/2 ! 0.707a
Number of second neighbors 12 6 6
Second neighbor distance 21/2a a a
Packing fractiona

!0.524 !0.680 !0.740

a The packing fraction is the maximum proportion of the available volume that can be filled
with hard spheres.

1
6!!21

8!!31
6!

1
4a31

2a3

109°28

a1

a2a3

y

z

x

a

Figure 9  Body-centered cubic lattice, showing a
primitive cell. The primitive cell shown is a rhombo-
hedron of edge a, and the angle between adja-
cent edges is 109"28#.

1
2!3

Figure 10  Primitive translation vectors of the body-
centered cubic lattice; these vectors connect the lattice
point at the origin to lattice points at the body centers.
The primitive cell is obtained on completing the rhom-
bohedron. In terms of the cube edge a, the primitive
translation vectors are

Here , , are the Cartesian unit vectors.ẑŷx̂
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Characteristics of cubic latticesa
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Index System for Crystal Planes

• Find the intercepts on the axes 
in terms of the lattice constants 
a1, a2, a3. The axes may be 
those of a primitive or 
nonprimitive cell. 

• Take the reciprocals of these 
numbers and then reduce to 
three integers having the same 
ratio, usually the smallest three 
integers. The result, enclosed in 
parentheses (hkl), is called the 
index of the plane. 
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Crystal lattices can be carried or mapped into themselves by the lattice
translations T and by various other symmetry operations. A typical
symmetry operation is that of rotation about an axis that passes through
a lattice point.

Lattices can be found with rotational symmetry corresponding to
rotations by 2𝜋, 2𝜋/2, 2𝜋/3, 2𝜋/4, and 2𝜋/6 radians and by integral
multiples of these rotations. The rotation axes are denoted by the
symbols 1, 2, 3, 4, and 6.

Lattice Point Group
By lattice point group we mean the collection of symmetry operations
which, applied about a lattice point, carry the lattice into itself.

We can have mirror reflections m about a plane through a lattice point.
The inversion operation is composed of a rotation of 𝜋 followed by
reflection in a plane normal to the rotation axis; the total effect is to
replace r by -r.
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symmetry: the pentagons do not fit together to fill all space, showing that we can-
not combine fivefold point symmetry with the required translational periodicity.

By lattice point group we mean the collection of symmetry operations
which, applied about a lattice point, carry the lattice into itself. The possible ro-
tations have been listed. We can have mirror reflections m about a plane through

1  Crystal Structure 7

Figure 5  A fivefold axis of symmetry can-
not exist in a periodic lattice because it is 
not possible to fill the area of a plane with 
a connected array of pentagons. We can,
however, fill all the area of a plane with just
two distinct designs of “tiles” or elementary
polygons.

(a)

(c) (d) (e)

(b)

Figure 6  (a) A plane of symmetry parallel to the faces of a cube. (b) A diagonal plane of symmetry
in a cube. (c) The three tetrad axes of a cube. (d) The four triad axes of a cube. (e) The six diad axes
of a cube.
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Symmetry Planes and Axes



Ø Covalent bonding

Ø Ionic bonding

Ø Metallic bonding

Ø Van der waals bonding

Ø Hydrogen bonding

Forces hold the atoms together in a solid

20

Crystal Bindings

All bonding is a consequence of the electrostatic
interaction between the nuclei and electrons.



Ø Covalent bonding takes place between atoms with small differences
in electronegativity which are close to each other in the periodic
table (between non-metals and non-metals).

Ø The covalent bonding is formed when the atoms share the outer
shell electrons (i.e., s and p electrons) rather than by electron
transfer.

Ø Noble gas electron configuration can be attained.

21

Covalent Bonding



H2
+ ion
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Each electron in a shared pair is attracted to both nuclei
involved in the bond. The approach, electron overlap,
and attraction can be visualized as shown in the
following figure representing the nuclei and electrons in
a hydrogen molecule.
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Diamond Structure

Ø The diamond structure is an example of the directional covalent
bonding found in the group IV elements, such as C, Si, Ge.

Ø The structure is of the fcc lattice, consisting of the basis of two
identical elements (000) and (1/4, 1/4, 1/4).

Ø Each atom has four nearest neighbours and 12 next nearest neighbours.
24



Ø Ionic bonding is the electrostatic force of attraction
between positively and negatively charged ions
(between non-metals and metals).

Ø All ionic compounds are crystalline solids at room
temperature.

Ø NaCl is a typical example of ionic bonding.

25

Ionic Bonding

Na Cl



Energies of Interactions Between Atoms
The energy of the crystal is lower than that of the free
atoms by an amount equal to the energy required to pull
the crystal apart into a set of free atoms. This is called the
binding (cohesive) energy of the crystal.

26



The main contribution to the binding energy of ionic crystals is electrostatic
and is called the Madelung energy.
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Madelung Energy

If Uij is the interaction energy between ions i and j, we define a sum Ui
which includes all interactions involving the ion i:

If Uij is the interaction energy between ions i and j, we define a sum Ui

which includes all interactions involving the ion i:

(17)

where the summation includes all ions except j ! i. We suppose that Uij may be
written as the sum of a central field repulsive potential of the form ! exp("r/"),
where ! and " are empirical parameters, and a coulomb potential #q2/r. Thus

(CGS) (18)

where the $ sign is taken for the like charges and the – sign for unlike charges.
In SI units the coulomb interaction is #q2/4#$0r; we write this section in CGS
units in which the coulomb interaction is #q2/r.

The repulsive term describes the fact that each ion resists overlap with the
electron distributions of neighboring ions. We treat the strength ! and range "
as constants to be determined from observed values of the lattice constant and
compressibility; we have used the exponential form of the empirical repulsive
potential rather than the R"12 form used for the inert gases. The change is
made because it may give a better representation of the repulsive interaction.
For the ions, we do not have gas-phase data available to permit the indepen-
dent determination of ! and ". We note that " is a measure of the range of the
repulsive interaction; when r ! ", the repulsive interaction is reduced to e"1

of the value at r ! 0.
In the NaCl structure the value of Ui does not depend on whether the 

reference ion i is a positive or a negative ion. The sum in (17) can be arranged
to converge rapidly, so that its value will not depend on the site of the reference
ion in the crystal, as long as it is not near the surface. We neglect surface effects

Uij ! ! exp("rij
  /") ! q2/rij ,

Ui ! !
j
"Uij ,

62

Table 6  Electron affinities of negative ions
The electron affinity is positive for a stable negative ion.

Atom Electron affinity energy eV Atom Electron affinity energy eV

H 0.7542 Si 1.39
Li 0.62 P 0.74
C 1.27 S 2.08
O 1.46 Cl 3.61
F 3.40 Br 3.36
Na 0.55 I 3.06
Al 0.46 K 0.50

Source: H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).
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If we let                    , where R is the nearest-neighbor separation in the 
crystal, then 

and write the total lattice energy Utot of a crystal composed of N molecules or
2N ions as Utot ! NUi. Here N, rather than 2N, occurs because we must count
each pair of interactions only once or each bond only once. The total lattice en-
ergy is defined as the energy required to separate the crystal into individual
ions at an infinite distance apart.

It is convenient again to introduce quantities pij such that rij ! pijR, where
R is the nearest-neighbor separation in the crystal. If we include the repulsive
interaction only among nearest neighbors, we have

(CGS)
(19)

Thus

(CGS) (20)

where z is the number of nearest neighbors of any ion and

(21)

The sum should include the nearest-neighbor contribution, which is just z.
The (") sign is discussed just before (25). The value of the Madelung constant
is of central importance in the theory of an ionic crystal. Methods for its calcu-
lation are discussed next.

At the equilibrium separation so that

(CGS) (22)

or

(CGS) (23)

This determines the equilibrium separation R0 if the parameters !, " of the re-
pulsive interaction are known. For SI, replace q2 by q2/4#$0.

The total lattice energy of the crystal of 2N ions at their equilibrium sepa-
ration R0 may be written, using (20) and (23), as

(CGS) (24)

The term is the Madelung energy. We shall find that ! is of the
order of 0.1R0, so that the repulsive interaction has a very short range.
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where z is the number of nearest 
neighbors of any ion and 



Sodium Chloride Structure

Ø Sodium chloride also crystallizes
in a cubic lattice, but with a
different unit cell.

Ø Sodium chloride structure
consists of equal numbers of
sodium and chlorine ions placed
at alternate points of a fcc cubic
lattice.

Ø Each ion has six of the other
kind of ions as its nearest
neighbours.

28

separated by one-half the body diagonal of a unit cube. There are four units of
NaCl in each unit cube, with atoms in the positions

Each atom has as nearest neighbors six atoms of the opposite kind. Represen-
tative crystals having the NaCl arrangement include those in the following
table. The cube edge a is given in angstroms; 1 Å ! 10!8 cm ! 10!10 m ! 0.1
nm. Figure 17 is a photograph of crystals of lead sulfide (PbS) from Joplin,
Missouri. The Joplin specimens form in beautiful cubes.

Cesium Chloride Structure

The cesium chloride structure is shown in Fig. 18. There is one molecule
per primitive cell, with atoms at the corners 000 and body-centered positions

of the simple cubic space lattice. Each atom may be viewed as at the center1
2�

1
2�

1
2

Crystal
 LiH
 MgO
 MnO
 NaCl

 a
4.08 Å
4.20
4.43
5.63

Crystal
 AgBr
 PbS
 KCl
 KBr

 a
5.77 Å
5.92
6.29
6.59

Cl:
Na:

   000 ;
 1

2 12 12    ;

1
2 120 ;
001

2 ;

1
201

2 ;
01

20 ;
01

2 12 .
1
200 .

14

Figure 18  The cesium chloride crystal
structure. The space lattice is simple
cubic, and the basis has one Cs" ion at
000 and one Cl! ion at 12�

1
2�

1
2.

Figure 17  Natural crystals of lead sulfide, PbS, which has the
NaCl crystal structure. (Photograph by B. Burleson.)
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Metallic elements have only up to the valence electrons in
their outer shell.
When losing their electrons they become positive ions.
Electronegative elements tend to acquire additional
electrons to become negative ions or anions.
When the Na+ and Cl- ions approach each other closely
enough so that the orbits of the electron in the ions begin to
overlap with each other, then the electron begins to repel
each other by virtue of the repulsive electrostatic coulomb
force. Of course the closer together the ions are, the greater
the repulsive force.
Pauli exclusion principle has an important role in repulsive
force. To prevent a violation of the exclusion principle, the
potential energy of the system increases very rapidly.
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Cesium Chloride Structure

Ø Cesium chloride also crystallizes
in a cubic lattice, but with a
different unit cell.

Ø Cesium chloride structure
consists of equal numbers of
cesium and chlorine ions placed
at alternate points of a simple
cubic lattice with Ce+ ion at (000)
and Cl- at (½, ½, ½).

Ø Each ion has eight of the other
kind of ions as its nearest
neighbours.
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Comparison of Ionic and Covalent Bonding

31



Ø Metallic bonding is found in metal
elements. This is the electrostatic
force of attraction between
positively charged ions and
delocalized outer electrons.

Ø The metallic bond is weaker than
the ionic and the covalent bonds.

Ø A metal may be described as a low-
density cloud of free electrons.

Ø Therefore, metals have high
electrical and thermal conductivity.
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Metallic Bonding



Ø These are weak bonds with a typical strength of 0.2
eV/atom.

Ø Van Der Waals bonds occur between neutral atoms
and molecules.

Ø Weak forces of attraction result from the natural
fluctuations in the electron density of all molecules
that cause small temporary dipoles to appear within
the molecules.

Ø It is these temporary dipoles that attract one
molecule to another. They are called van der Waals'
forces.

33

Van der Waals Bonding



Ø The shape of a molecule influences its ability to form temporary
dipoles. Long thin molecules can pack closer to each other than
molecules that are more spherical. The bigger the 'surface area' of
a molecule, the greater the van der Waal's forces will be and the
higher the melting and boiling points of the compound will be.

Ø Van der Waal's forces are of the order of 1% of the strength of a
covalent bond.
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Homonuclear molecules,
such as iodine, develop
temporary dipoles due to

natural fluctuations of electron 
density within the molecule 

Heteronuclear molecules,
such as H-Cl have permanent 
dipoles that attract the opposite

pole in other molecules. 



Ø These forces are due to the electrostatic attraction between
the nucleus of one atom and the electrons of the other.

35

¡ Van der waals interaction occurs generally between 
atoms which have noble gas configuration.

van der waals 
bonding



Ø A hydrogen atom, having one electron, can be covalently bonded to
only one atom. However, the hydrogen atom can involve itself in an
additional electrostatic bond with a second atom of highly
electronegative character such as fluorine or oxygen. This second
bond permits a hydrogen bond between two atoms or strucures.

Ø The strength of hydrogen bonding varies from 0.1 to 0.5 ev/atom.
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Hydrogen bonds connect water molecules in
ordinary ice. Hydrogen bonding is also very
important in proteins and nucleic acids and
therefore in life processes.

Hydrogen Bonding

In the extreme ionic form of the hydrogen bond,
the hydrogen atom loses its electron to another
atom in the molecule; the bare proton forms the
hydrogen bond.

close packed structures: hcp, fcc, bcc, and some other closely related structures,
and not in loosely-packed structures such as diamond.

In the transition metals there is additional binding from inner electron shells.
Transition metals and the metals immediately following them in the periodic
table have large d-electron shells and are characterized by high binding energy.

HYDROGEN BONDS

Because neutral hydrogen has only one electron, it should form a covalent
bond with only one other atom. It is known, however, that under certain condi-
tions an atom of hydrogen is attracted by rather strong forces to two atoms,
thus forming a hydrogen bond between them, with a bond energy of the
order of 0.1 eV. It is believed that the hydrogen bond is largely ionic in charac-
ter, being formed only between the most electronegative atoms, particularly F,
O, and N. In the extreme ionic form of the hydrogen bond, the hydrogen atom
loses its electron to another atom in the molecule; the bare proton forms the
hydrogen bond. The atoms adjacent to the proton are so close that more than
two of them would get in each other’s way; thus the hydrogen bond connects
only two atoms (Fig. 13).

The hydrogen bond is an important part of the interaction between H2O
molecules and is responsible together with the electrostatic attraction of the
electric dipole moments for the striking physical properties of water and ice. It
is important in certain ferroelectric crystals and in DNA.

ATOMIC RADII

Distances between atoms in crystals can be measured very accurately by 
x-ray diffraction, often to 1 part in 105. Can we say that the observed distance
between atoms may be assigned partly to atom A and partly to atom B? Can a
definite meaning be assigned to the radius of an atom or an ion, irrespective of
the nature and composition of the crystal?

Strictly, the answer is no. The charge distribution around an atom is not
limited by a rigid spherical boundary. Nonetheless, the concept of an atomic
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H!

F" F"

Figure 13  The hydrogen difluoride ion 
is stabilized by a hydrogen bond. The sketch 
is of an extreme model of the bond, extreme 
in the sense that the proton is shown bare of
electrons.

HF"
2
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Types of 
Bonding

Ionic Covalent Metallic Van der 
Waals

Hydrogen

Melting Point High Very High Variable Low Low

Hardness Hard and 
Brittle

Very hard Variable Soft and 
Brittle

Soft and 
Brittle

Conductivity Low Low High Non-
conducting

Non-
conducting

Examples NaCl, ZnS Diamond, 
Graphite

Au, Cu, Fe Ne, Ar, Kr Ice, Organic 
solids

Properties of Different Bonding



Exercises
1. Draw the primitive unit cell of the fcc lattice and determine the

lengths of the primitive lattice vectors a', b', c' (in units of the
conventional lattice constant a) and also the angles a', b', c' between
the primitive lattice vectors. (Hint: Express the primitive lattice
vectors as a linear combination of the lattice vectors a, b, c of the
body-centered cubic lattice and use elementary vector algebra.) What
distinguishes this unit cell from that of the rhombic Bravais lattice?

2. Supposing the atoms to be rigid spheres, what fraction of space is
filled by atoms in the primitive cubic, fcc, hcp, bcc, and diamond
lattices?

3. Take the CsCl structure and assume that the cation radius becomes
smaller while the anion radius remains constant. What happens to the
binding energy? Show that for small cations the NaCl lattice becomes
the preferred structure. For an even smaller cation radius the ZnS
lattice has the largest binding energy (Madelung constant A=1.638).
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